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Abstract: Reinforcement learning tracking control (RLTC) is proposed to solve the traditional iterative learning control (ILC)
problem. For unknown continuous dynamic systems, precision output tracking is achieved for a given trajectory after several
times of trials. The controller is composed of a feedback part and a feedforward part, where the feedback part uses linear states
feedback to stabilize the system and the feedforward part is a time-dependent signal to ensure precision tracking. The desired
trajectory is defined in a finite time interval and the controller is applied repeatedly to the system with the feedforward signal
updated by reinforcement learning in each trial. The tracking problem is treated as a black-box optimization problem where the
integral quadratic tracking error is a cost to be minimized under input constraints. In order to apply reinforcement learning, the
feedforward signal is approximated by spline interpolation of a few representative points distributed uniformly along the tracking
time interval. A search strategy based on squeeze theorem is adopted to update the value of the representative points to achieve
minimum tracking error cost. The cart pole example illustrates the effectiveness of the proposed method.

Key Words: Tracking control, iterative learning control, reinforcement learning, black-box optimization.

1 Introduction

Reinforcement learning, a promising method to achieve
human-level or superman control, is getting more and more
attention with the recent development in artificial
intelligence. Inspired by learning behaviors of organism,
reinforcement learning usually refers to an agent that
interacts with the environment and modifies its actions
based on rewards received in response to its actions. This
agent has proven to be effective in handling complicated
tasks in various fields.

Playing board game is one of the most successful
applications of reinforcement learning. In 2015, Google’s
DeepMind created AlphaGo, a program that beat human Go
Champion Fan Hui, Lee Sedol, and the highest-ranking Go
player, Ke Jie from China [1]. AlphaGo is trained by
supervised learning from human expert moves, and
reinforcement learning from self-play. At the time of this
paper, the program has presented a more powerful algorithm
named MuZero, which achieves superhuman performance
without any knowledge of the underlying dynamics aiming
to solve real-world problems with complex and unknown
dynamics [2]. Reinforcement learning also inspires some
new methods applied in continuous action space. A typical
example is deep Q-network (DQN), which was used to
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create a human-level agent that is virtually unbeatable
across a set of 49 Atari video games [3]. The derived method,
deep Q-Learning [4], is a model-free algorithm that can
operate over continuous action spaces, solving more than 20
simulated physics tasks, including cartpole swing-up,
dexterous manipulation, legged locomotion and car driving.
Another technique, known as adaptive dynamic
programming (ADP) [5-6], is developed to solve optimal
control problems. Using actor and critic neural networks,
ADP is able to solve the intractable Bellman equation to
obtain the optimal control law.

However, it is noted that most of these works focus on
setpoint control, i.e., keeping the control objective at a fixed
target position. To the authors’ knowledge, only a few
papers talk about tracking control problem [7-10] and the
results are still far from perfect. Therefore, the extension of
reinforcement learning to tracking control for continuous
nonlinear systems has remained a non-trivial open problem.
In this paper, we intend to apply reinforcement learning to
the tracking control problem for unknown continuous
dynamic systems. Since it is based on reinforcement
learning, we will call it reinforcement learning tracking
control (RLTC). We imagine that RLTC may be divided
into two levels:

Primary RLTC: This is the short-term goal. The tracking
task is fixed. The system is allowed to repeat the same
tracking task for several times, where the performance is
improved gradually towards the optimal. For this level of
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control, the learning period is short, and the required
information is relatively less. In fact, the task is the same as
that in iterative learning control (ILC) [11-12]. However,
ILC usually requires zero initial state error and has some
limitations in dealing with systems with relative degree
bigger than one and nonminimum phase systems.

Advanced RLTC: This is the long-term goal. The system
can generalize its experience to new situations so that it can
accomplish a new task without several times of trial. For this
level of control, the learning period may be long so that
adequate information about the system can be acquired,
which may be represented by some nonlinear function
approximator such as deep neural network.

In this paper, we focus on primary RLTC. Our goal is to
achieve tracking for a given finite-time output trajectory by
learning from previous trials. Unlike DQN or ADP, which
focus on approximating the optimal feedback control law
with neural networks, we simply use a linear feedback
control law along with a feedforward signal, aiming to find
an optimal feedforward signal that minimizes the integral
quadratic tracking error. Then the tracking control problem

is treated as an optimization problem under input constraints.

When the system dynamics is exactly known, several
trajectory optimization methods are available to solve this
problem, such as pseudospectral methods [13-14], which
use some specific polynomials to approximate the state and
control input, and performs orthogonal collocation at a set of
carefully selected quadrature points. However, these
methods require exact knowledge of the system model, and
the calculated input cannot be directly applied to real
control.

Motivated by pseudospectral methods, we approximate
the feedforward signal by a spline interpolation of some
representative points so that the original problem is reduced
to a finite-dimensional black-box optimization problem. We
will solve this problem by using the idea of reinforcement
learning, = which can be  summarized as a
try-evaluate-improve process, i.e., we try a new policy,
evaluate its performance, and adopt it if it is better than
previous. A search strategy based on squeeze theorem is
adopted to explore the possible locations of the
representative points efficiently. Then the feedforward
signal is going towards the optimal solution by continually
adopting the better policy.

The main contribution of this paper is the development of
RLTC method, which solves the traditional ILC problem
from the perspective of trajectory optimization, releasing
some inherit limitations of ILC. It may also be helpful for
other black-box optimization problem. Compared to DQN
and ADP, we focus on shaping the feedforward signal rather
than the feedback signal. Moreover, RLTC method is
generally direct, simple and powerful without using
complicated neural networks, which does not require to
know the system dynamics.

2 Main Results of RLTC

The control task of RLTC is the same as ILC, i.e., to track
a given output trajectory which is defined in a finite-time
interval by learning from previous trials. For RLTC, this
problem is treated as an optimization problem to minimize
the tracking error under input constraints. Like ILC, we
assume that the initial conditions are set the same for each
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repetition and the system dynamics is invariant throughout
the repetition. The control architecture of RLTC is shown in
Fig. 1.

/
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Fig. 1: RLTC architecture

The model of the dynamic system to be controlled is
unknown. Only the states and the output are available for the
controller. The output reference trajectory y, is defined in a

finite time interval [0,7]. The controller is composed of a

feedback part and a feedforward part, where the feedback
part uses linear states feedback to stabilize the system and
the feedforward part is a time-dependent signal to ensure
precision tracking. The controller is applied repeatedly to
the system with the feedforward signal updated by
reinforcement learning in each trial.

To begin with, it is assumed that there exists a linear
control law u = Kx that can stabilize the system locally (K
can be found by trial for simulated system). Then the
controller is designed as follows

u=u,(1)+Kx )
where Kx is the feedback part with K being the feedback
gain matrix, and u,(¢) is the feedforward signal. In this

controller, the feedback part is fixed while the feedforward
signal is modified in each trial. To evaluate the tracking
performance of each trial, we define the integral quadratic

T
tracking error as a cost, i.e., Q=J.0 ¢’ (7)dr . Obviously,

the cost O depends on the feedforward signal u, (t) The

goal of this paper is to find an optimal feedforward signal
such that the tracking error cost is minimized. Since u ()
is a continuous signal depends on time t, this is an
infinite-dimensional optimization problem. To make it
easier to handle, the feedforward signal can be
approximated by a spline interpolation of a few
representative points. For simplicity, the representative
points are selected as n points distributed uniformly along
the tracking time interval. Let u, be the value vector of the

representative points, and t, =[t,,4,.,,...1, ] be the
corresponding time vector where ¢, =0,4, =T /(n-1),...,
t,., =T . Then the feedforward signal u, (¢) is expressed as
follows

u, (1) =spline(tp,up,t) )
Thus the original problem turns into a finite-dimensional

optimization problem, i.e., finding the most proper value of
u, to minimize the tracking error cost O . The optimal

feedforward value vector u’

, 18 formally defined as follows
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3

Since the system dynamics is unknown, this is a black-box
optimization problem. We solve this problem by using the
idea of reinforcement learning, which can be summarized as
a try-evaluate-improve process. This is the core of RLTC,
forming the policy updating loop as shown in Fig. 2. In this
loop, we try a new feedforward control signal each time as
policy exploration, evaluate its performance, and adopt the
new policy if it is better than previous, during which the
policy is gradually improved.

o . T 2
u = .eurgrr‘}‘l)njc0 e’ (r)dr

Fig. 2: Policy updating loop of RLTC

In the policy exploration, an efficient search strategy
based on squeeze theorem is adopted. The search strategy
has three main parts: up search, down search, and step adjust.
Since the feedforward signal is represented by several points,
we follow the coordinate descent idea, i.e., change the value
of one point during each search. We do policy evaluation for
each change to see if we get a smaller tracking error cost. It
means to apply the controller (1) to the system with current
feedforward signal. Then the overall flow chart of RLTC
algorithm is shown in Fig. 3.

First point

»i

Adjust searching
step

Fig. 3: Flow chart of RLTC algorithm

Initialization. An initial feedforward signal is set (e.g.,
select u, as a zero vector), and the cost is obtained in policy

evaluation.

Policy Updating. The policy updating follows the
coordinate descent idea. Each searching loop will start from
the first point until the last point. First, do up search to

replace its value by u, (i)=u,(i)+J , where J is the

searching step. Obtain the new cost in policy evaluation. If
the new cost is smaller and the resulted input maintains in
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the constraints, then adopt the new value and go to next
point, else recover the old value and do down search to

replace its value by u, (i) =u, (i)—J . Obtain the new cost

in policy evaluation. If the new cost is smaller and the
resulted input maintains in the constraints, then adopt the
new value and go to next point, else recover the old value
and go to next point. If no improvement is made during the
loop, then adjust the step by 6 =J/2 and go to up search
from the first point.
End. If enough search loop is made, output the optimal
policy.

Fig. 4 shows an example of the feedforward signal
updating process, where u, is the final optimal feedforward

signal, u},ul,u; represent the initial feedforward signal,

the feedforward signal after one searching loop, and the
feedforward signal after two searching loops, respectively.
In this example, the task duration is 10 seconds and 11
representative points are selected, which locate at the time
instants 0, 1, 2, ..., 10, respectively. It can be seen that
starting from zero, the feedforward signal gradually goes
towards the optimal solution.

5

Control input

2 A BB 7
Simulation time (s)
Fig. 4: Feedforward signal updating process

For the representative points, some go directly to the
optimal location, such as the one at t = 5s, while others may
first go in an opposite direction of the optimal location and
then turn back, such as the one at t = 2s. This is because the
RLTC algorithm looks for a better global rather than local
solution when updating each representative point. In
addition, a relatively big step in the beginning of the
updating process may cause an excessive adjustment, which
will be corrected in later iterations of the policy updating
loop.

3 Simulation and Discussions

In this section, the RLTC method is applied to a simulated
physical system, the cart-pole system, which is a classical
nonlinear, unstable, nonminimum phase system that has
been widely used in control education and research to
demonstrate the effectiveness of various control methods.
The cart-pole system is shown in Fig. 5, which consists of a
cart and a planar inverted pendulum on it.

In this system, u is the external force that moves the cart
in the horizontal plane, x is the cart position, & is the pole
angle, M is the mass of the cart, m is the mass of the pole, [ is
the half length of the pole. The equations of motion are
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Fig. 5: Cart-pole system

where J=4mi* /3 is the moment of inertia of the pendulum
with respect to the pivot, g =9.8m/s* is the acceleration

due to gravity. Denote v = x,@ =6 as the cart velocity and
the pole angular velocity, and denote x =x,v,6, a)]T as the

system states. Take the external force u as the control input
and the cart position x as the output. The objective is to let
the cart position track a given trajectory and keep the pole
from falling down. In the simulation, the system parameters
are selected as m =1kg, M =10kg,l =1m , and the feedback

control gain is designed as K = [5,15,—200,—80]T . The
input constraint is set as —30 < u <30 . The initial condition
issetas x(0)= [O,O,O,O]T . The simulation time is set as 10

seconds. The representative points number is set as 11. The
searching loop number is set as 40. Two cases are
considered with a step trajectory and a sinusoidal trajectory,
respectively.

In the first case, a step trajectory x, =1 is considered.

The simulation results are shown in Figs. 6 and Fig. 7.

1.5

- 1 w6
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Z 05 1712 D
[=]
o ]
Q
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o 0
05 ' ' ‘ : -rl12
0 2 4 6 8 10

Simulation time (s)

Fig. 6: Cart position and pole angle for step trajectory

As shown in Fig. 6, the cart position reaches the setpoint
in about 2 seconds, then overshoot slightly, and finally
achieves nearly steady-state. The final cost is 1.274.
Meanwhile, the pole angle keeps in a small neighborhood
around zero. From Fig. 7, it can be seen that the control input
maintains in the input constraint range, which starts from the
maximum negative value to eliminate the initial error and
then converges to steady-state.
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Fig. 7: Control input for step trajectory

8

As a comparison, we assume the system dynamics is
known and solve this optimization problem by GPOPS, a
program based on hp-adaptive pseudospectral methods [15].
The result is shown in Fig. 8. It can be seen that the optimal
control input exhibits a “bang-bang” feature. The cost is
1.127. RLTC cannot lead to such result since the spline
interpolation smooths the input signal. Nevertheless,
comparing the two costs, RLTC still yields a nice result
without knowing the system dynamics.

1.25 w2
£ 1 2x/5 E
é 0.75 M 3x/10
g 0.5] ==X qn5 D
2 025 0] 110 &
% S
O 0 0 o

-0.25 - - - * -m/10

0 2 < 6 8 10
Simulation time (s)
40

z

=20

3

o

£ of

2

5 -20

o

-40 : : : :

0 2 <4 6 8 10

Simulation time (s)
Fig. 8: Optimization result for step trajectory by GPOPS

the
x, =sin(0.57¢) is considered. The simulation results are

In second case, a sinusoidal trajectory

shown in Fig. 9 and Fig. 10.

As shown in Fig. 9, the cart position reaches the desired
trajectory in about 2 seconds and then nearly coincides with
the desired trajectory, meanwhile the pole keeps upright.
The final cost is 0.6795. The control input maintains in the
constraint range as shown in Fig. 10.

15 w4

R i 1w/6
£ =
‘é’ 0.5 1wtz £
. o
% 0 B
2 @
© 0.5} 1-mi12 L
[3¥] [=]
O o

17 1-n/6

-1.5 * * * * -4

0 2 4 6 8 10

Simulation time (s)
Fig. 9: Cart position and pole angle for sinusoidal trajectory
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Fig. 10: Control input for sinusoidal trajectory

The optimization result by GPOPS is shown in Fig. 11,
with a cost 0f 0.5267. Still a “bang-bang” feature is observed
in the beginning. Then after t = 3s the optimal control input
is nearly the same as the input obtained by RLTC.
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Fig. 11: Optimization result for sinusoidal trajectory by GPOPS

In this case, it is noted that there is an initial tracking error
though the cart position is in the right place at the beginning.
This is due to the initial condition mismatch. Since the

desired cart position is x, =sin(0.57¢) , the desired cart

velocity should be v, =0.57cos(0.57¢) . Therefore, the

initial values for the cart position and velocity should
bex, (0)=0 and v, (0)=0.57. As for the pole angle and

the angle velocity, their desired trajectories and initial
values are determined by ideal internal dynamics [16].
Based on the previous simulation, we can find out the values
for the pole angle and angular velocity at time t = 8s, which
are about #=0 and @w=0.3. Therefore, a matched initial

condition should be x(0)= [0,1.57,0,0.3]T . The simulation

result of RLTC is shown in Fig. 12 with the matched initial
condition. It can be observed that the initial tracking error is
eliminated and the proposed RLTC method achieves nearly
perfect tracking.

In our algorithm, the searching loop number and the
representative points number play important roles in the
final tracking performance. To evaluate their impacts, more
simulations will be taken in the next.
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Fig. 12: Cart position for sinusoidal trajectory with matched initial

condition

2

® Impact of searching loop number

To explore the impact of searching loop number, a
comparison is made with different searching loop number
(N=2, N=5, and N=10) for the sinusoidal reference as shown
in Fig. 13.

1.5

1

o
o

Cart position (m)
S
w

-1

1.5 I I I I
0

Simulation time (s)
Fig. 13: Cart position for sinusoidal trajectory with different
searching loop number

From Fig. 13, it can be seen that the cart position
approaches the desired trajectory as the searching loop
number increases and nearly coincides with the desired
trajectory after ten searching loops of trial and improvement.
To show this impact more clearly, the tracking error
cost-searching loop number curve is shown in Fig. 14, from
which it can be seen that the tracking error cost converges to
zero quickly with the increase of the searching loop number
and approaches nearly zero when N=10.

3 T T T T

Tracking error cost

0 1
2 4 6 10
Searching loop number

Fig. 14: Tracking error cost-searching loop number curve

8

® Impact of representative points number

Another factor, the representative points number, will
also affect the tracking performance as it determines the
maximum approximation precision for the optimal
feedforward input that can be achieved. To evaluate this
impact, a comparison is made with different representative
points number (n=6, n=11, and n=21) for the sinusoidal
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reference. The tracking error cost-iteration number curve is
shown in Fig. 15.

3 T

Tracking error cost

8

6
Searching loop number
Fig. 15: Tracking error cost-searching loop number curve with
different number of representative points

10

As can be seen from Fig. 15, when the representative
points are too sparse, say n = 6, the tracking error will
remain large even with enough searching loops. That’s
because the sampling points are too less so that the spline
interpolation cannot approximate the optimal feedforward
signal properly. Comparing the results forn=11 andn=21,
it can be seen that the tracking error converges a little faster
when n = 21 but it is also more time-consuming since it has
more points to adjust. As a trade-off, a proper number of
representative points should be chosen to ensure a good
tracking (enough points should be chosen) as well as
efficiency (points not too much).

4 Conclusions

In this paper, reinforcement learning tracking control
(RLTC) is proposed to accomplish a repeated tracking
control task for unknown continuous dynamic systems.
RLTC solves the traditional ILC problem from a new way,
releasing some inherit limitations of ILC, it can therefore
deal with nonzero initial state errors, systems with relative
degree bigger than one and nonminimum phase systems. In
the RLTC framework, a feedback control is designed to
stabilize the system and a feedforward signal is updated by
reinforcement learning to minimize the tracking error cost.
The feedforward signal is approximated by spline
interpolation of a few representative points to convert the
problem to a finite-dimensional black-box optimization
problem. The core of RLTC is the policy updating loop,
where the policy exploration based on squeeze theorem can
explore the possible locations of the representative points
efficiently and the policy evaluation can tell whether the
tracking performance is improved. Then the feedforward
signal is going towards the optimal by continually adopting
the better policy. RLTC makes a successful attempt to apply

reinforcement learning to solve the tracking control problem.

The method is generally direct and simple, without using
complicated neural networks, as well as very powerful
which does not require to know the system dynamics.

119

However, this paper only deals with the primary RLTC
problem with repeated tracking task. In the future, advanced
RLTC will be investigated to possibly accomplish new
tracking task by learning from the experience.
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